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Outline
 Concurrency levels of implementation
 Concurrency motivation
 Basic concepts
 Imperative programs and FSM’s
 Threads and their problems
 Processes and their communications
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Concurrency Implementation
 Concurrency can be implemented and 

modeled at different levels of abstraction:
 High level issues were considered in the 

concurrent MoC’s (Chapter 6)
 Low level issues are implemented in hardware 

and software in processors (Chapters 7 to 10 
which are not covered in this course)

 There are mid-level mechanisms to implement 
concurrency in software (focus of this chapter)

 Shown graphically in the next slide
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Concurrency Abstraction Levels
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Justification
 Motivations for and uses of concurrency:

1. Improving responsiveness by giving priority to time-
sensitive tasks (HW and SW interrupts):
 Long-running, less critical programs give way to more critical 

tasks
 This reduces latency from stimulus to response

2. Improving performance by allowing multi-processor 
execution of a program (exploiting parallelism in 
hardware)

3. Creating the illusion of simultaneity by running multiple 
programs on a single hardware (multitasking)

4. Direct control over the real-time constraints:
 Needed when a task has to be executed at or finished by an 

exact time
5
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Basic Concepts
 Multitasking definition: (apparently) 

simultaneous execution of multiple tasks
 Design tools that support concurrent 

MoC’s usually handle the issues at higher 
levels of abstraction

 The high-level description is expected to 
automatically generate lower level
implementations of concurrency

 So the designers may not need to handle 
concurrency issues at lower levels
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Basic Concepts (Continued)
 But if concurrency needs to be done at 

mid-level, then OS usually takes care of it
 Even if the OS handles it, it is still tricky
 If not done by OS, it is even harder to 

handle it and requires deep understanding 
of the concurrency issues

 Our only tool at mid-level:
 Programs written in one of the programming 

languages
 All are inherently imperative
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Imperative Programs
 Imperative programs: consist of a 

sequence of operations or instructions
 All existing programming languages are 

imperative in nature
 How to model and implement concurrency 

using imperative programs?
 Extended FSM’s can model the behavior of an 

imperative program with fixed and bounded 
variables

 But there is no one-to-one correspondence due 
to potential complexity of a program
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Mid-Level Concurrency Challenges
 The potential complexity of a program’s 

data structure can be a problem:
 A theoretically unbounded data structure (like 

linked list) cannot be described accurately by 
an FSM

 Adding concurrency makes it even more 
complex:
 Handling it at mid-level can be difficult and 

error-prone (as will be shown)
 Threads are used to handle some of these 

difficulties
9
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Threads
 Threads are imperative pieces of code that 

run concurrently and share memory
 The most common form of threads:

 interrupts
 It is possible to create threads at a higher 

level than an interrupt:
 OS provides a collection of procedures (called 

API) for use by programmers
 Might even allow creation of processor-

independent and OS-independent code
 Example: Pthreads (POSIX threads) 10
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Pthreads
 Pthreads is an API implemented by many 

operating systems, both real-time and not
 A library of C procedures
 Standardized by the IEEE in 1988
 Currently implemented in most modern 

operating systems
 Pthreads may not be apparently visible in 

a programming language, but they are 
still used behind the scene

 Example: Java
11
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Pthreads Usage Example
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Thread Implementation
 Needs a scheduler:

1. In general, thread scheduling and predicting 
their behavior is difficult

2. Without an OS, multithreading is achieved 
with interrupts and timing is determined by 
external events

3. Generic and non-real-time OS’s (like Linux, 
Windows, …) provide thread libraries (like 
Pthreads) and provide no fixed guarantees 
about when threads will execute => no 
guarantee on concurrency
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Thread Implementation (Cont’d)
4. Real-time operating systems (RTOS’s), like 

RTLinux and Windows CE, support a variety of 
ways of controlling when threads execute 
(process creation and killing, priorities, 
preemption policies, deadlines, …)
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Notes About Threads
 Threads may or may not begin running 

when created
 A thread may be suspended between any 

two atomic instructions to execute another 
thread and/or interrupt service routine
 Atomic instructions: typically assembly 

language instructions, not high-level language 
statements

 States or transitions can also represent atomic 
instructions
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Notes (Continued)
 Threads can often be given priorities, and 

these may or may not be respected by the 
operating system or the thread scheduler

 Threads may block on semaphores
 If two threads compete to access the 

same resource (race condition), the result 
may depend on the order of their accesses

 To prevent failures in these cases mutual 
exclusion locks (mutex) are used
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Mutual Exclusion Lock
 In this figure, each state represents an 

atomic instruction
 Choose one thread arbitrarily
 Advance to a next state if guards are 

satisfied
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 Repeat this!
 If done properly, one 

thread has to wait 
for the other before 
it can proceed
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Mutex
 A mutual exclusion lock prevents any two 

threads from simultaneously accessing or 
modifying a shared resource

 The code between the lock and unlock is a 
critical section

 At any one time, only one thread can be 
executing code in the critical section

 A programmer may need to ensure that all 
accesses to a shared resource are 
similarly protected by locks
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Risk of Deadlock
 Deadlock is when one or more thread is 

permanently blocked waiting to acquire 
locks

 Some possible ways to prevent deadlocks:
1. Use only one lock in an entire program

 Loses modular programming, misses real-time 
constraints

2. Enable/disable interrupts when accessing a 
shared resource
 Doesn’t work if a thread is suspended due to other 

reasons
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Deadlock Preventions (Cont’d)
 Some possible ways to prevent deadlocks:

3. Ensure all threads acquire and release their 
locks in the same order
 Very hard to guarantee:

 For example when a team is developing the code
 Sometimes impossible:

 For example when a code needs to be called, it 
acquires a lock but other locks may have to be 
released first => the code may be suspended

4. Other solutions exist but (almost) all of them 
impose tight constraints on the program or 
the programmer(s)
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Memory Consistency Problem
 The value of shared variables depend on the 

order of threads execution

21

Another thread 
changes the variable(s)
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Memory Consistency Solutions
 Generate a memory consistency model:

 A model to determine the effects of the 
threads on each other’s variables

 Simplest  model:
 Assume variables are updated in the order of 

program instructions (sequential consistency)
 Problems:

1. Sequential consistency is impossible with 
Pthreads

2. Instructions can be reordered by the compiler 
and/or the hardware
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Summarizing Thread Problems
 The main problem is in our multithread model:

 From the perspective of any thread, the entire state of 
the universe can change between any two atomic 
actions (itself an ill-defined concept)

 This notion makes them very nondeterministic
 The programmer’s job is to prune away the 

nondeterminism by imposing constraints on 
execution order (e.g., mutexes) and limiting 
shared data accesses (e.g., OO design)

 Conclusion: threads are not the best way to 
create concurrency
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Alternative: Processes
 Process: an imperative program which is a 

collection of threads with its own unshared 
memory space
 Communication between processes must occur 

via OS facilities (like pipes or files)
 Well-written procedures needed in a library by 

experts
 Usually requires some form of hardware support:

 Memory management unit (MMU)
 The memory is not visible to other processes
 Segmentation faults are attempts to access 

memory not allocated to the process
24
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Inter-Process Communication
 Common process communication 

techniques:
 File system:

 Data can outlive a process
 Simple but restricts file access to one process at a 

time
 Message passing:

 Communication takes place in form of messages 
passed in a repository called shared memory space

 Prohibits direct sharing of data
 Application programs can only access thru OS
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Process Communication (Cont’d)
 Optimum buffer size needed to avoid deadlock or 

memory waste
 Can still suffer from deadlock
 Can be order-dependent (non-deterministic)

 Final conclusion: solve concurrency issues 
at higher levels of abstraction (as much as 
possible)

 Chapter 11 homework assignments: 1 
thru 5

 Due date: Tuesday 1404/2/16
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