
Embedded Systems Design and Modeling 1

Embedded Systems
Design and Modeling

Chapter 11
Multitasking

Embedded Systems Design and Modeling
2

Outline
 Concurrency levels of implementation
 Concurrency motivation
 Basic concepts
 Imperative programs and FSM’s
 Threads and their problems
 Processes and their communications

Embedded Systems Design and Modeling

Concurrency Implementation
 Concurrency can be implemented and

modeled at different levels of abstraction:
 High level issues were considered in the

concurrent MoC’s (Chapter 6)
 Low level issues are implemented in hardware

and software in processors (Chapters 7 to 10
which are not covered in this course)

 There are mid-level mechanisms to implement
concurrency in software (focus of this chapter)

 Shown graphically in the next slide

3

Embedded Systems Design and Modeling

Concurrency Abstraction Levels

4

Embedded Systems Design and Modeling

Justification
 Motivations for and uses of concurrency:

1. Improving responsiveness by giving priority to time-
sensitive tasks (HW and SW interrupts):
 Long-running, less critical programs give way to more critical

tasks
 This reduces latency from stimulus to response

2. Improving performance by allowing multi-processor
execution of a program (exploiting parallelism in
hardware)

3. Creating the illusion of simultaneity by running multiple
programs on a single hardware (multitasking)

4. Direct control over the real-time constraints:
 Needed when a task has to be executed at or finished by an

exact time
5

Embedded Systems Design and Modeling

Basic Concepts
 Multitasking definition: (apparently)

simultaneous execution of multiple tasks
 Design tools that support concurrent

MoC’s usually handle the issues at higher
levels of abstraction

 The high-level description is expected to
automatically generate lower level
implementations of concurrency

 So the designers may not need to handle
concurrency issues at lower levels

6

Embedded Systems Design and Modeling

Basic Concepts (Continued)
 But if concurrency needs to be done at

mid-level, then OS usually takes care of it
 Even if the OS handles it, it is still tricky
 If not done by OS, it is even harder to

handle it and requires deep understanding
of the concurrency issues

 Our only tool at mid-level:
 Programs written in one of the programming

languages
 All are inherently imperative

7

Embedded Systems Design and Modeling

Imperative Programs
 Imperative programs: consist of a

sequence of operations or instructions
 All existing programming languages are

imperative in nature
 How to model and implement concurrency

using imperative programs?
 Extended FSM’s can model the behavior of an

imperative program with fixed and bounded
variables

 But there is no one-to-one correspondence due
to potential complexity of a program

8

Embedded Systems Design and Modeling

Mid-Level Concurrency Challenges
 The potential complexity of a program’s

data structure can be a problem:
 A theoretically unbounded data structure (like

linked list) cannot be described accurately by
an FSM

 Adding concurrency makes it even more
complex:
 Handling it at mid-level can be difficult and

error-prone (as will be shown)
 Threads are used to handle some of these

difficulties
9

Embedded Systems Design and Modeling

Threads
 Threads are imperative pieces of code that

run concurrently and share memory
 The most common form of threads:

 interrupts
 It is possible to create threads at a higher

level than an interrupt:
 OS provides a collection of procedures (called

API) for use by programmers
 Might even allow creation of processor-

independent and OS-independent code
 Example: Pthreads (POSIX threads) 10

Embedded Systems Design and Modeling

Pthreads
 Pthreads is an API implemented by many

operating systems, both real-time and not
 A library of C procedures
 Standardized by the IEEE in 1988
 Currently implemented in most modern

operating systems
 Pthreads may not be apparently visible in

a programming language, but they are
still used behind the scene

 Example: Java
11

Embedded Systems Design and Modeling

Pthreads Usage Example

12

Embedded Systems Design and Modeling

Thread Implementation
 Needs a scheduler:

1. In general, thread scheduling and predicting
their behavior is difficult

2. Without an OS, multithreading is achieved
with interrupts and timing is determined by
external events

3. Generic and non-real-time OS’s (like Linux,
Windows, …) provide thread libraries (like
Pthreads) and provide no fixed guarantees
about when threads will execute => no
guarantee on concurrency

13

Embedded Systems Design and Modeling

Thread Implementation (Cont’d)
4. Real-time operating systems (RTOS’s), like

RTLinux and Windows CE, support a variety of
ways of controlling when threads execute
(process creation and killing, priorities,
preemption policies, deadlines, …)

14

Embedded Systems Design and Modeling

Notes About Threads
 Threads may or may not begin running

when created
 A thread may be suspended between any

two atomic instructions to execute another
thread and/or interrupt service routine
 Atomic instructions: typically assembly

language instructions, not high-level language
statements

 States or transitions can also represent atomic
instructions

15

Embedded Systems Design and Modeling

Notes (Continued)
 Threads can often be given priorities, and

these may or may not be respected by the
operating system or the thread scheduler

 Threads may block on semaphores
 If two threads compete to access the

same resource (race condition), the result
may depend on the order of their accesses

 To prevent failures in these cases mutual
exclusion locks (mutex) are used

16

Embedded Systems Design and Modeling

Mutual Exclusion Lock
 In this figure, each state represents an

atomic instruction
 Choose one thread arbitrarily
 Advance to a next state if guards are

satisfied

17

 Repeat this!
 If done properly, one

thread has to wait
for the other before
it can proceed

Embedded Systems Design and Modeling

Mutex
 A mutual exclusion lock prevents any two

threads from simultaneously accessing or
modifying a shared resource

 The code between the lock and unlock is a
critical section

 At any one time, only one thread can be
executing code in the critical section

 A programmer may need to ensure that all
accesses to a shared resource are
similarly protected by locks

18

Embedded Systems Design and Modeling

Risk of Deadlock
 Deadlock is when one or more thread is

permanently blocked waiting to acquire
locks

 Some possible ways to prevent deadlocks:
1. Use only one lock in an entire program

 Loses modular programming, misses real-time
constraints

2. Enable/disable interrupts when accessing a
shared resource
 Doesn’t work if a thread is suspended due to other

reasons

19

Embedded Systems Design and Modeling

Deadlock Preventions (Cont’d)
 Some possible ways to prevent deadlocks:

3. Ensure all threads acquire and release their
locks in the same order
 Very hard to guarantee:

 For example when a team is developing the code
 Sometimes impossible:

 For example when a code needs to be called, it
acquires a lock but other locks may have to be
released first => the code may be suspended

4. Other solutions exist but (almost) all of them
impose tight constraints on the program or
the programmer(s)

20

Embedded Systems Design and Modeling

Memory Consistency Problem
 The value of shared variables depend on the

order of threads execution

21

Another thread
changes the variable(s)

Embedded Systems Design and Modeling

Memory Consistency Solutions
 Generate a memory consistency model:

 A model to determine the effects of the
threads on each other’s variables

 Simplest model:
 Assume variables are updated in the order of

program instructions (sequential consistency)
 Problems:

1. Sequential consistency is impossible with
Pthreads

2. Instructions can be reordered by the compiler
and/or the hardware

22

Embedded Systems Design and Modeling

Summarizing Thread Problems
 The main problem is in our multithread model:

 From the perspective of any thread, the entire state of
the universe can change between any two atomic
actions (itself an ill-defined concept)

 This notion makes them very nondeterministic
 The programmer’s job is to prune away the

nondeterminism by imposing constraints on
execution order (e.g., mutexes) and limiting
shared data accesses (e.g., OO design)

 Conclusion: threads are not the best way to
create concurrency

23

Embedded Systems Design and Modeling

Alternative: Processes
 Process: an imperative program which is a

collection of threads with its own unshared
memory space
 Communication between processes must occur

via OS facilities (like pipes or files)
 Well-written procedures needed in a library by

experts
 Usually requires some form of hardware support:

 Memory management unit (MMU)
 The memory is not visible to other processes
 Segmentation faults are attempts to access

memory not allocated to the process
24

Embedded Systems Design and Modeling

Inter-Process Communication
 Common process communication

techniques:
 File system:

 Data can outlive a process
 Simple but restricts file access to one process at a

time
 Message passing:

 Communication takes place in form of messages
passed in a repository called shared memory space

 Prohibits direct sharing of data
 Application programs can only access thru OS

25

Embedded Systems Design and Modeling

Process Communication (Cont’d)
 Optimum buffer size needed to avoid deadlock or

memory waste
 Can still suffer from deadlock
 Can be order-dependent (non-deterministic)

 Final conclusion: solve concurrency issues
at higher levels of abstraction (as much as
possible)

 Chapter 11 homework assignments: 1
thru 5

 Due date: Tuesday 1404/2/16

26

